35. X-Ray Studies of Molecular Overcrowding. Part V. ${ }^{1}$ The Crystal and Molecular Structure of 2-Chloro-4-nitroaniline.

By A. T. McPhail and G. A. Sim.

2-Chloro-4-nitroaniline crystallizes in the orthorhombic system, space group Pna2, with four molecules in the unit cell of dimensions $a=11 \cdot 25$, $b=16.85, c=3.87 \AA$. The atomic co-ordinates and anisotropic thermal parameters have been refined by least-squares calculations from threedimensional intensity data. The final value of R is $0 \cdot 103$. The molecules are held together in the crystal by normal van der Waals forces and by a weak NH \cdots O hydrogen bond of length $3.05 \AA$. The nitro-group is twisted $4^{\circ} 20^{\prime}$ out of the plane of the benzene ring. The angle between the $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{NH}_{2}$ bond directions is $62^{\circ} 30^{\prime}$. The atomic thermal vibrations have been analysed in terms of rigid-body molecular vibrations and it has been established that the centre of oscillation of the molecule is displaced by about $1.2 \AA$ from the centre of mass. The root-mean-square translational movement in the molecular plane $(0.21 \AA)$ is considerably greater than that normal to the plane ($0 \cdot 13 \AA$).
In a number of crystallographic studies of benzene derivatives it has been found that nitro-groups adjacent to hydrogen atoms buttressed by bulky substituents (nitro- and carboxyl groups) are rotated out of the benzene planes; thus in 2 -chloro-5-nitrobenzoic

Table 1.
Atomic co-ordinates.

Atom	x / a	y / b	z / c	Atom							x / a	y / b	z / c
$\mathrm{C}(1) \ldots \ldots \ldots \ldots$	0.1849	0.4534	0.1159	$\mathrm{~N}(1)$	$\ldots \ldots \ldots$	0.1101	0.5147	0.0218					
$\mathrm{C}(2) \ldots \ldots \ldots \ldots$	0.2947	0.4641	0.2762	$\mathrm{~N}(2)$	$\ldots \ldots \ldots$	0.4019	0.2573	0.4090					
$\mathrm{C}(3) \ldots \ldots \ldots \ldots$	0.3676	0.4014	0.3793	$\mathrm{O}(1) \ldots \ldots \ldots$.	0.4937	0.2714	0.5727						
$\mathrm{C}(4) \ldots \ldots \ldots \ldots$	0.3295	0.3247	0.2942	$\mathrm{O}(2) \ldots \ldots \ldots \ldots$	0.3707	0.1895	0.3287						
$\mathrm{C}(5) \ldots \ldots \ldots \ldots$	0.2217	0.3095	0.1339	$\mathrm{Cl} \ldots \ldots \ldots \ldots$	0.3396	0.5614	0.3790						
$\mathrm{C}(6) \ldots \ldots \ldots \ldots$	0.1513	0.3740	0.0414										

Table 2.
Standard deviations of the final atomic co-ordinates (\AA).

	Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$		Atom	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
C(1)		0.008	$0 \cdot 009$	0.017	N(1)		0.008	0.008	$0 \cdot 012$
$\mathrm{C}(2)$		0.009	$0 \cdot 008$	0.013	N(2)		0.008	0.007	$0 \cdot 016$
$\mathrm{C}(3)$		0.009	0.009	0.013	$\mathrm{O}(1)$		0.009	0.008	0.012
$\mathrm{C}(4)$		0.008	0.008	0.017	$\mathrm{O}(2)$		0.009	0.007	0.019
C.(5)		0.010	0.008	0.016	Cl		0.002	0.002	0.007
$\mathrm{C}(6)$		0.008	$0 \cdot 009$	0.015					

acid, ${ }^{1} m$-dinitrobenzene, ${ }^{2}$ and 1 -chloro- 2,4 -dinitrobenzene ${ }^{3}$ such nitro-groups are inclined at 7,11 , and 15°, respectively, to the benzene planes. We considered it possible that a substituent considerably smaller than nitro or carboxyl (e.g., Br, Cl, or CH_{3}) placed meta to a nitro-group might exert a small buttressing effect on the adjacent hydrogen atom and hence produce a measurable, though small, displacement of the nitro-group from the benzene plane. To test this we have determined the crystal structure of 2 -chloro- 4 -nitroaniline and refined the atomic parameters extensively by Fourier and least-squares methods. The final atomic co-ordinates are given in Table 1 and the estimated standard deviations of these co-ordinates in Table 2. The final electron-density distribution is shown in Fig. 1 as superimposed contour sections drawn parallel to (001) and covering the region of one molecule. The arrangement of the molecules in the crystal as viewed in projection along the c-axis is illustrated in Fig. 2.

[^0]Table 3.
Deviations (\AA) of the atoms from various planes.
(a) Plane through $\mathrm{C}(1), \cdots \mathrm{C}(6), \mathrm{N}(1), \mathrm{N}(2), \mathrm{O}(1), \mathrm{O}(2)$, Cl .
(b) Plane through $\mathrm{C}(1), \cdots \mathrm{C}(6), \mathrm{N}(1), \mathrm{N}(2)$, Cl .
(c) Plane through $\mathrm{C}(1), \cdots \mathrm{C}(6), \mathrm{N}(1)$, Cl .
(d) Plane through $\mathrm{C}(4), \mathrm{N}(2), \mathrm{O}(1), \mathrm{O}(2)$.

The displacements of the atoms from the best plane through the chlorine, carbon, nitrogen, and oxygen atoms of the molecule, calculated by the method of Schomaker et al., ${ }^{4}$ are shown in Table 3. Application of the χ^{2}-test ${ }^{5}$ to these displacements indicated that the

Fig. 1. Final three-dimensional electron-density distribution for 2-chloro-4-nitroaniline shown by means of superimposed contour sections drawn parallel to (001). Contour interval 1 e \AA^{-3}, except around the chlorine atom where it is $2 \mathrm{e}^{-3}$.

Fig. 2. The arrangement of molecules in the crystal as viewed along the c-axis.
molecule cannot be considered planar, for $\Sigma \Delta^{2}=1.23 \times 10^{-2} \AA^{2}$ and $\chi^{2}=\Sigma \Delta^{2} / \sigma^{2} \approx 59$. When the oxygen atoms were omitted from the calculation of a mean molecular plane the resultant atomic deviations (see Table 3) were still too large for the plane to be regarded as satisfactory, for $\Sigma \Delta^{2}=4 \cdot 1 \times 10^{-3} \AA^{2}$ and $\chi^{2} \approx 20$. Since the nitrogen atom of the nitrogroup had the largest deviation we calculated the mean plane through the carbon atoms, the chlorine atom, and the nitrogen atom of the amino-group. The deviations of these atoms from the plane (see Table 3) are sufficiently small to be considered insignificant ($\Sigma \Delta^{2}=1.1 \times 10^{-3} \AA^{2}$ and $\chi^{2} \approx 5$).

[^1]The deviations of the atoms of the nitro-group and carbon atom $\mathrm{C}(4)$ of the benzene ring from a plane are not significant (see Table 3). The angle between this plane and that through $\mathrm{C}(1) \cdots \mathrm{C}(6), \mathrm{N}(1), \mathrm{Cl}$ is $4^{\circ} 20^{\prime}$, slightly greater than the corresponding angle in p-nitroaniline $\left(1^{\circ} 54^{\prime}\right) .{ }^{6}$ The nitrogen atom of the nitro-group is displaced by $0.077 \AA$ from the mean plane through $\mathrm{C}(1) \cdots \mathrm{C}(6), \mathrm{N}(1), \mathrm{Cl}$, implying an out-of-plane deflection of the $\mathrm{C}(4)-\mathrm{N}(2)$ bond of about 3°; this also is rather greater than the value reported for p-nitroaniline $\left(0^{\circ} 24^{\prime}\right) .{ }^{6}$ If these differences can be attributed to the chlorine atom rather than to crystal packing forces, then the chlorine atom indeed appears to exert a measurable steric effect on the nitro-group in the 4 -position. However, the effect is small and further crystal analyses of related compounds appear desirable.

Table 4.
Anisotropic temperature factors $\left(b_{i j} \times 10^{5}\right)$.

	b_{11}	b_{22}	b_{33}	b_{12}	b_{23}	b_{13}
C(1)	1104	515	4382	6	600	527
$\mathrm{C}(2)$	1258	387	5324	-272	-696	1067
$\mathrm{C}(3)$	1206	492	5743	42	1135	772
C(4)	1477	462	2883	157	768	642
C(5)	1711	443	4047	-201	103	1741
C (6)	1258	520	8623	-175	-93	1524
$\mathrm{N}(1)$	1198	580	8235	151	1129	238
N(2)	1712	531	10,475	504	2087	2860
$\mathrm{O}(1)$	2364	844	10,260	1109	1027	-218
$\mathrm{O}(2)$	2724	521	17,778	470	1112	856
Cl	1487	416	5491	-245	-996	239

Table 5.
Interatomic distances (\AA) and angles.
Intramolecular bonded distances.

	Uncorrected	Corrected	e.s.d.		Uncorrected	Corrected	e.s.d.
$\mathrm{C}(1)-\mathrm{C}(2)$	1.394	1.400	0.014	$\mathrm{C}(1)-\mathrm{N}(1)$	1.382	1.386	0.012
$\mathrm{C}(2)-\mathrm{C}(3)$	1.396	1.401	0.012	$\mathrm{C}(2)-\mathrm{Cl}$	1.760	1.766	0.009
$\mathrm{C}(3)-\mathrm{C}(4)$	1.401	1.407	0.012	$\mathrm{C}(4)-\mathrm{N}(2)$	1.466	1.471	0.013
$\mathrm{C}(4)-\mathrm{C}(5)$	1.387	1.392	0.015	$\mathrm{~N}(2)-\mathrm{O}(1)$	1.235	1.240	0.015
$\mathrm{C}(5)-\mathrm{C}(6)$	1.391	1.395	0.013	$\mathrm{~N}(2)-\mathrm{O}(2)$	1.236	1.240	0.011
$\mathrm{C}(6)-\mathrm{C}(1)$	1.420	1.425	0.013				

Intermolecular distances.*										
$\mathrm{O}(2) \cdots \mathrm{N}(1)_{\mathrm{I}}$	3.047	$\mathrm{O}(1)$	(6) ${ }_{\mathbf{v}}$	$3 \cdot 526$	$\mathrm{C}(2)$	$\mathrm{N}(1)_{\mathrm{IV}}$	$3 \cdot 656$	$\mathrm{N}(2)$	$(2)_{\text {IV }}$	3.755
$\mathrm{N}(1) \cdots \mathrm{N}(1)_{\mathrm{II}}$	$3 \cdot 182$	C(3)	$\mathrm{C}(6)_{\text {rv }}$	$3 \cdot 564$	$\mathrm{O}(1)$	$\mathrm{Cl}_{\text {III }}$	$3 \cdot 656$	C(5)	C(6) ${ }_{\text {Iv }}$	3.761
$\mathrm{O}(1) \cdots \mathrm{C}(5)_{\mathrm{III}}$	$3 \cdot 365$	N(2)	$\mathrm{C}(5)_{\text {IV }}$	$3 \cdot 571$		$\mathrm{N}(1)_{\text {IV }}$	$3 \cdot 671$	$\mathrm{C}(3)$	(4) ${ }_{\text {IV }}$	3.794
$\mathrm{O}(1) \cdots \mathrm{N}(2)_{\text {Iv }}$	$3 \cdot 406$	$\mathrm{O}(1)$	Clvi	$3 \cdot 587$	$\mathrm{C}(3)$	$\mathrm{C}(5)_{\mathrm{IV}}$	$3 \cdot 691$		C(1) Iv	3.804
$\mathrm{O}(1) \cdots \mathrm{C}(4) \mathrm{lv}$	3.466	C(4)	${ }_{\text {C }}(6)_{\text {IV }}$	3.615	$\mathrm{C}(2)$	$\mathrm{C}(6)_{\mathrm{IV}}$	$3 \cdot 699$	$\mathrm{O}(1)$	$C(5)_{1 v}$	3.807
$\mathrm{C}(4) \cdots \mathrm{C}(5) \mathrm{lv}$	$3 \cdot 478$	C(3)	$\mathrm{C}(1)_{\text {IV }}$	$3 \cdot 621$	$\mathrm{N}(2)$	C(4) ${ }_{\text {rv }}$	3.700	C(1)	C(6) ${ }_{\text {Iv }}$	3.842
$\mathrm{C}(2) \cdots \mathrm{C}(1)_{\text {IV }}$	3.481	O(1)	$\mathrm{C}(5)_{\mathrm{v}}$	$3 \cdot 627$	C(1)	$\mathrm{N}(1)_{\text {II }}$	3.711	$\mathrm{N}(2)$	C(6) III	$3 \cdot 846$
$\mathrm{O}(2) \cdots \mathrm{C}(6)_{\text {III }}$	3.514	Cl	$\mathrm{O}(2)_{\mathrm{vII}}$	$3 \cdot 645$	C(3)	$\mathrm{C}(2)_{\mathrm{IV}}$	$3 \cdot 720$	$\mathrm{O}(2)$	$\mathrm{Cl}_{\text {I }}$	$3 \cdot 846$
$\mathrm{O}(1) \cdots \mathrm{O}(2)_{\mathrm{IV}}$	3.519				$\mathrm{C}(1)$	$\mathrm{N}(1)_{\text {IV }}$	$3 \cdot 751$			

I $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}+z$ V $\frac{1}{2}+x$, $\frac{1}{2}-y, 1$ II $-x$, $1-y, \frac{1}{2}+z$ VI $1-x$, III $1-y, \frac{1}{2}$ IV $\frac{1}{2}+x$, $\frac{1}{2}-y$, z VII IV $\frac{1}{2}-x$, $\frac{1}{2}+y, \frac{1}{2}$							
Valency angles.							
$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(3)$	123.3°	$\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(1)$	$122 \cdot 2$	$\mathrm{C}(1) \mathrm{C}(2) \mathrm{Cl}$	$118 \cdot 4$	$\mathrm{C}(4) \mathrm{N}(2) \mathrm{O}(1)$	118.1
$\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)$	116.9	$\mathrm{C}(6) \mathrm{C}(1) \mathrm{C}(2)$	116.7	$\mathrm{C}(3) \mathrm{C}(2) \mathrm{Cl}$	118.2	$\mathrm{C}(4) \mathrm{N}(2) \mathrm{O}(2)$	118.9
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5)$	122.9	$\mathrm{C}(2) \mathrm{C}(1) \mathrm{N}(1)$	$124 \cdot 0$	$\mathrm{C}(3) \mathrm{C}(4) \mathrm{N}(2)$	118.3	$\mathrm{O}(1) \mathrm{N}(2) \mathrm{O}(2)$	123.0
$\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6)$	$118 \cdot 0$	$\mathrm{C}(6) \mathrm{C}(1) \mathrm{N}(1)$	119.3	$\mathrm{C}(5) \mathrm{C}(4) \mathrm{N}(2)$	118.6		

The anisotropic thermal parameters shown in Table 4 were analysed to yield the two symmetric tensors T and ω (Table 11) which describe the translational vibrations and angular

[^2]oscillations of the molecule about axes parallel to the molecular inertial axes (see Experimental section). The centre of oscillation of the molecule is displaced from the centre of mass by $1.2 \AA$; the positions of these centres and of the molecular axes are shown in Fig. 3. The values of the T and ω tensors are rather similar to those of naphthalene, ${ }^{7}$ though in the present case the r.m.s. translational vibration perpendicular to the molecular plane $(0 \cdot 13 \AA)$ is distinctly smaller than the r.m.s. translational vibrations parallel to the axes in the molecular plane ($0.22,0.21 \AA$), whereas in naphthalene the r.m.s. translational vibrations are considerably more isotropic ($0 \cdot 19,0 \cdot 20,0 \cdot 22 \AA$).

The various interatomic distances and valency angles derived from the final atomic co-ordinates, are listed in Table 5; the bond-lengths in the column headed "corrected " have been adjusted to allow for the effect of the angular oscillations of the molecule. The estimated standard deviations of the bond-lengths range from 0.009 to $0.015 \AA$. The average e.s.d. of a valency angle is about 1°.

The carbon-amino-nitrogen distance of $1.386 \AA$ is in good agreement with the values of $s p^{2}$-carbon-nitrogen bonds in 2 -amino-3-methylbenzoic acid ($1 \cdot 367 \AA$, uncorrected for librational effects), ${ }^{8} p$-nitroaniline ($1 \cdot 371 \AA$), ${ }^{6}$ byssochlamic acid bis- p-bromophenylhydrazide ($1.39 \AA$), ${ }^{9}$ and various indole alkaloids, e.g., echitamine ($1.38 \AA$). ${ }^{10}$ The dimensions of the nitro-group do not differ significantly from those reported for p-nitroaniline, ${ }^{6}$ nitrobenzene, ${ }^{11}$ and m-dinitrobenzene. ${ }^{2}$ In each molecule the angles CNO are less than 120° while the angle ONO exceeds 120°; these angular variations can be interpreted qualitatively in terms of inter-electron repulsion between pairs of non-bonding electrons on the oxygen atoms. The carbon-chlorine distance of $1.766 \AA$ is not significantly different from the values in 2 -chloro- 5 -nitrobenzoic acid ($1.753 \AA$), ${ }^{1}$ o-chlorobenzoic acid $(1.737 \AA),{ }^{12}$ and $4,4^{\prime}$-dichlorodiphenyl sulphone ($1.736 \AA$). ${ }^{13}$ As the average carbonchlorine distance in alkyl halides is $1.767 \AA,{ }^{14}$ and the radius of an $s p^{2}$-hybridized carbon atom is $0.02-0.03 \AA$ smaller than that of an $s p^{3}$-hybridized carbon atom, there appears to be little, if any, double-bond character associated with the carbon-chlorine bond in 2-chloro-4-nitroanaline.

The shortest intermolecular contact, $3.047 \AA$, occurs between oxygen atom $\mathrm{O}(2)$ of the nitro-group and the amino-nitrogen atom of a neighbouring molecule (see Fig. 2). This distance is indicative of weak hydrogen-bonding of the type NH $\cdots \mathrm{O}$. The other intermolecular approach distances (see Table 5) correspond to normal van der Waals interactions.

Experimental

Crystal Data.-2-Chloro-4-nitroaniline, $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClN}_{2} \mathrm{O}_{2} ; \quad M=172 \cdot 6 ; \quad \mathrm{m}$. p. 105-106 . Orthorhombic, $a=11.25, b=16.85, c=3.87 \AA, U=734.0 \AA,{ }^{3} D_{m}=1.545 \mathrm{~g} . \mathrm{cm} .^{-3}, Z=4$, $D_{c}=1.562 \mathrm{~g} . \mathrm{cm} .^{-3}, F(000)=352$. Space group, Pna2 $\left(C^{9}{ }_{2 v}\right)$. Absorption coefficient for X-rays $(\lambda=1.542 \AA), \mu=42.6 \mathrm{~cm} .^{-1}$. Crystallization from aqueous ethanol gave single crystals in the form of thin, narrow laths elongated along c.

Experimental Measurements.-Rotation, oscillation, and Weissenberg photographs were taken with $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=1.542 \AA)$; precession photographs were taken with $\mathrm{M}_{0}-K_{\alpha}$ radiation $(\lambda=0.7107 \AA)$. The systematic absences are consistent with two space groups, $P n a 2_{1}$ and Pnam. The centrosymmetric space group Pnam requires two mirror planes $c / 2$ apart, each plane containing two molecules flat within it. Examination of the c-axis projection showed that the molecular plane is only approximately, not exactly, parallel to (001) and the space group is therefore $P n a 2_{1}$. The intensity data, consisting of the layers $h k 0-h k 2$, were

[^3]Table 6.
Measured and calculated values of the structure factors.

Table 6. (Continued.)

obtained from equatorial and equi-inclination multiple-film Weissenberg photographs. The intensities were estimated visually and were corrected for Lorentz, polarization, and the rotation factors ${ }^{15}$ appropriate to upper layers. The absolute scale of each layer of reflexions was obtained during the analysis by correlation of the $\left|F_{o}\right|$ values with the calculated structure amplitudes, $\left|F_{c}\right|$. In all 614 independent structure amplitudes were measured (Table 6). The crystal density was determined by flotation in aqueous zinc chloride.

Structure Analysis.-The initial x and y co-ordinates of the atoms other than hydrogen were derived from the c-axis projection of the isomorphous 2 -bromo-4-nitroaniline crystal structure. ${ }^{16}$

[^4]Preliminary refinement of the crystal structure in the c-axis projection was then carried out by Fourier and least-squares methods and the value of R, the usual discrepancy factor, fell from 0.410 to 0.142 for the $h k 0$ reflexions.

The initial z co-ordinates of the various atoms were derived by assuming that the molecule was planar and that the benzene ring was a regular hexagon of side $1 \cdot 40 \AA$. An overall isotropic temperature factor B of $4.0 \AA^{2}$ was adopted and structure factors for the $h k 1$ and $h k 2$ reflexions were calculated; the values of R were $0 \cdot 206$ and $0 \cdot 272$, respectively.

The good agreement between measured and calculated structure amplitudes prompted us to proceed immediately to a least-squares refinement of positional and anisotropic temperaturefactor parameters for all atoms other than hydrogen. The programme was that devised by Rollett. ${ }^{17}$ After five rounds of calculations the parameter changes became small and the values of R were reduced to 0.137 for the $h k 0,0.107$ for the $h k 1$, and 0.097 for the $h k 2$ reflexions. The overall value of R for the 614 reflexions was $0 \cdot 115$.

At this stage we decided to allow for the hydrogen atoms of the benzene ring. Co-ordinates were calculated by placing the atoms radially at a distance of $1.08 \AA$ from the carbon atoms to

Fig. 3. The centre of mass; the centre of oscillation, and the molecular axes.

Fig. 4. Sections through the three-dimensional difference electron-density distribution at the positions of the hydrogen atoms. Contour interval 0.1 e \AA^{-3}, zero contour broken.
which they are covalently bonded. The temperature factor for the hydrogen atoms was assigned the value $B=4 \cdot 2 \AA^{2}$. Three further rounds of least-squares calculations were then carried out; hydrogen contributions were included in the structure-factor calculations, but only the parameters of the other atoms were adjusted by the programme. The overall value of R fell to $0 \cdot 105$.

When the hydrogen atoms were omitted from the calculation of structure factors, F_{c}, the value of R was $0 \cdot 111$. A three-dimensional Fourier synthesis with coefficients ($F_{o}-F_{c}$) was evaluated, and sections through this electron-density distribution in the regions of the hydrogen atoms are shown in Fig. 4. Small peaks of height $0.3-0.4 \mathrm{e}^{-3}$ appear in the expected positions for the hydrogen atoms of the benzene ring and one of the hydrogen atoms of the amino-group. Residual anisotropic thermal motion of the chlorine atom obscured the other hydrogen atom of the amino-group.

In the calculation of the final set of structure factors we allowed for all five hydrogen atoms of the molecule. The co-ordinates of those of the amino-group were obtained by assuming that the system $\mathrm{C}-\mathrm{NH}_{2}$ is planar with CNH angles of 120°, and that the $\mathrm{N}-\mathrm{H}$ bond-length is $1 \AA$. The final calculated structure amplitudes and phase angles are shown with the measured
${ }^{17}$ Rollett, "Computing Methods and the Phase Problem in X-ray Crystal Analysis," ed. Pepinsky, Robertson, and Speakman, Pergamon Press, Oxford, 1961, p. 87.
structure amplitudes in Table 6. The final value of R is $\mathbf{0} \cdot \mathbf{1 0 3}$. The theoretical atomic scattering factors used in the structure-factor calculations were those of Berghuis et al., for carbon, nitrogen, and oxygen, ${ }^{18}$ that of McWeeny for hydrogen, ${ }^{19}$ and that of Tomiie and Stam for chlorine. ${ }^{20}$

The phase constants and measured structure amplitudes shown in Table 6 were used to evaluate the three-dimensional electron-density distribution shown in Fig. 1 as superimposed contour sections drawn parallel to (001).

The standard deviations of the final atomic co-ordinates were derived from the least-squares residuals by means of the equation

$$
\sigma^{2}\left(x_{i}\right)=\sum_{j} w_{j}\left(\Delta F_{j}\right)^{2} /\left[(n-s) \sum w_{j}\left(\partial F_{j} / \partial x_{i}\right)^{2}\right]
$$

The results are listed in Table 2.
The parameters defining the anisotropic thermal vibrations are given in Table 4; they are values of $b_{i j}$ in the equation

$$
\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)=2^{-\left(b_{11} h^{2}+b_{28} k^{2}+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)}
$$

Analysis of the Thermal Motion.-The anisotropic vibrations of each atom can be described by a symmetric tensor U. The mean-square amplitude of vibration in the direction of the unit vector l with components l_{i} is given by:

$$
\bar{u}^{2}=\sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} l_{i} l_{j}
$$

The six $U_{i j}$ values for each atom, apart from hydrogen, referred to the molecular inertial axes (see Fig. 3 and Tables 7 and 8) were calculated from the anisotropic temperature factors of

Table 7.
Direction cosines of the molecular axes with respect to the crystallographic axes.

	Axis	a	b	c
$O P$		$0 \cdot 8255$	$0 \cdot 3436$	0.4477
$O Q$	-0.3302	0.9374	-0.1107
OR		$0 \cdot 4577$	$0 \cdot 0564$	-0.8873

Table 8.
Co-ordinates of the centre of mass, O, and the centre of oscillation, O^{\prime}, of the molecule.

	x / a	y / b	z / c
O	$0 \cdot 3082$	$0 \cdot 3942$	$0 \cdot 2839$
O^{\prime}	0.2730	$0 \cdot 4610$	$0 \cdot 2499$

Table 4 and are shown in Table 9 in the columns headed " obs." The rigid-body vibrations of the molecule can be described by two symmetric tensors T and ω, where T represents the translational vibrations of the mass centre and ω the angular oscillations about the centre. ${ }^{21}$ The $U_{i j}^{\text {obs. }}$ values were used to calculate the T and ω tensors, and these tensors were then used to derive values of $U_{i j}^{\text {calc. }}$ for each atom; these values are given in Table 9 in the columns headed " calc. (i)." The discrepancies between the $U_{11}^{\text {obs. }}$ and $U_{11}^{\text {calc.(i) }}$ values indicated that, when the same axial directions are retained, the centre of oscillation of the molecule required to be moved along the Q-axis away from the centre of mass and towards the amino-group. Similar shifts of the centre of oscillation away from the mass centre have been encountered in monofluoroacetamide, ${ }^{22}$ benzo [c]phenanthrene, and 1,12-dimethylbenzo[c]phenanthrene. ${ }^{23}$

Several calculations of the values of T, ω, and $U_{i j}^{\text {calc. }}$ were carried out for different shifts (ΔQ) of the centre of oscillation. The results (see Table 10) show that a minimum value of $\Sigma\left|U_{i j}^{\text {obs. }}-U_{i j}^{\text {calc. }}\right|$ is obtained when ΔQ is about $1 \cdot 2 \AA$. The T and ω tensors obtained when the

[^5]Table 9.
Observed and calculated values of $U_{i j}$ (in units of $10^{-2} \AA^{2}$).

Atom		U_{11}			U_{22}			U_{33}		
		obs.	calc. (i)	calc. (ii)	obs.	calc. (i)	calc. (ii)	obs.	calc. (i)	calc. (ii)
C(1)	...	4.94	$6 \cdot 22$	4.90	4.95	$4 \cdot 83$	$4 \cdot 92$	$2 \cdot 46$	2.96	$2 \cdot 30$
C(2)	...	$4 \cdot 66$	$5 \cdot 83$	$4 \cdot 86$	$4 \cdot 82$	$4 \cdot 29$	$4 \cdot 50$	$2 \cdot 76$	$2 \cdot 42$	$1 \cdot 81$
C(3)	\ldots	$5 \cdot 75$	$5 \cdot 18$	$5 \cdot 55$	$4 \cdot 63$	$4 \cdot 53$	$4 \cdot 69$	2.91	1.88	$2 \cdot 52$
C(4)	\ldots	6.25	$5 \cdot 85$	6.97	$4 \cdot 32$	$4 \cdot 26$	$4 \cdot 48$	$2 \cdot 12$	$2 \cdot 44$	$3 \cdot 28$
C(5)	...	6.78	$5 \cdot 62$	$6 \cdot 60$	$5 \cdot 22$	$5 \cdot 41$	$5 \cdot 37$	$2 \cdot 16$	$2 \cdot 61$	$3 \cdot 94$
C(6)		$5 \cdot 83$	$5 \cdot 25$	$5 \cdot 13$	$5 \cdot 68$	$6 \cdot 16$	5.95	$3 \cdot 79$	$2 \cdot 48$	$3 \cdot 59$
N(1)		$6 \cdot 00$	$8 \cdot 84$	$5 \cdot 77$	$5 \cdot 15$	$5 \cdot 48$	$5 \cdot 44$	$4 \cdot 29$	$5 \cdot 69$	$3 \cdot 52$
$\mathrm{N}(2)$	\ldots	$10 \cdot 22$	$8 \cdot 41$	$10 \cdot 21$	$4 \cdot 17$	$4 \cdot 29$	$4 \cdot 50$	$4 \cdot 02$	$4 \cdot 86$	$5 \cdot 56$
$\mathrm{O}(1)$	\ldots	11.57	8.91	$10 \cdot 83$	6.06	$5 \cdot 35$	$5 \cdot 32$	$6 \cdot 67$	$5 \cdot 65$	6.95
$\mathrm{O}(2)$		12.51	11.08	13.07	$4 \cdot 83$	$4 \cdot 39$	$4 \cdot 57$	$9 \cdot 34$	$7 \cdot 52$	$7 \cdot 64$
Cl		$4 \cdot 89$	$8 \cdot 16$	$5 \cdot 49$	$5 \cdot 15$	$5 \cdot 21$	$5 \cdot 22$	$3 \cdot 60$	$5 \cdot 04$	$3 \cdot 02$
			U_{12}			U_{23}			U_{13}	
Ato		obs.	calc. (i)	calc. (ii)	obs.	calc. (i)	calc. (ii)	obs.	calc. (i)	calc. (ii)
C(1)		0.38	$0 \cdot 51$	0.00	-0.71	-0.55	-0.55	$0 \cdot 64$	$0 \cdot 82$	$0 \cdot 69$
C(2)	\ldots	-1.52	-0.41	-0.19	$0 \cdot 13$	-0.65	-0.68	$0 \cdot 68$	0.67	$0 \cdot 65$
$\mathrm{C}(3)$	\ldots	$0 \cdot 42$	-0.21	0.28	$-1 \cdot 14$	-0.60	-0.63	$0 \cdot 27$	$0 \cdot 70$	$0 \cdot 78$
C(4)	\ldots	$0 \cdot 19$	-0.37	-0.28	-1.00	-0.64	-0.69	1.57	$0 \cdot 69$	$0 \cdot 66$
C(5)		-1.47	-0.98	-1.36	-0.76	-0.47	-0.49	$1 \cdot 24$	0.58	$0 \cdot 36$
C(6)	\ldots	-0.78	0.09	-0.73	$0 \cdot 00$	-0.36	-0.31	-0.29	$0 \cdot 74$	0.50
N(1)	\ldots	0.98	$1 \cdot 84$	0.81	-0.91	-0.45	-0.42	0.05	$1 \cdot 00$	0.92
N(2)		$0 \cdot 85$	$0 \cdot 10$	$0 \cdot 30$	$-1 \cdot 12$	$\cdots 0.73$	-0.75	-0.69	$0 \cdot 74$	0.90
$\mathrm{O}(1)$		$2 \cdot 50$	1.75	$2 \cdot 14$	$-0 \cdot 13$	- $0 \cdot 69$	-0.58	$2 \cdot 51$	$1 \cdot 02$	1.48
$\mathrm{O}(2)$		-0.73	-1.15	-1.38	-0.90	- 0.66	-0.72	0.58	0.55	0.59
Cl		$-1 \cdot 63$	-1.95	-0.79	$0 \cdot 17$	- 6.49	-0.51	1.49	0.43	$0 \cdot 49$

Table 10.
Values of $\Sigma\left|\Delta U_{i j}\right|=\Sigma\left|U_{i j}^{\text {obs. }}-U_{i j}^{\text {calc. }}\right|$ (in units of $\left.10^{-2} \AA^{2}\right)$ for various shifts ΔQ (in \AA) of the centre of oscillation along $O Q$ away from the mass centre.

	0.0	0.2	0.4	$0 \cdot 6$	0.8	. 0	1.2	1.4	$1 \cdot 6$	1.8
$\Sigma \mid \Delta U_{i j}$	50.56	45.	39	35.85	34	$33 \cdot 39$	$33 \cdot 32$	33.67	$34 \cdot 30$	34.84

Table 11.
Values of $T_{i j}$ (in $10^{-2} \AA^{2}$) and $\omega_{i j}$ (in deg. ${ }^{2}$).

$$
T=\left[\begin{array}{rrr}
4.87 & -0.11 & 0.66 \\
& 4.47 & -0.69 \\
& 1.78
\end{array}\right] \quad \omega=\left[\begin{array}{lrr}
8.64 & 0.29 & -0.27 \\
& 13.63 & -3.26 \\
& 12.23
\end{array}\right]
$$

origin of the molecular axes was shifted by $1 \cdot 2 \AA$ to O^{\prime} (see Fig. 3 and Table 8) are listed in Table 11; from the square roots of the diagonal terms the r.m.s. amplitudes of translational vibration in the directions of the molecular axes and the r.m.s. amplitudes of angular oscillation about the molecular axes are:
along $O^{\prime} P 0.22 \AA$; about $O^{\prime} P 2.9^{\circ}$; along $O^{\prime} Q 0.21 \AA$; about $O^{\prime} Q 3.7^{\circ}$; along $O^{\prime} R \quad 0.13 \AA$; about $O^{\prime} R 3 \cdot 5^{\circ}$.

The values of $U_{i j}$ for the various atoms were calculated from the T and ω tensors of Table 11 and are listed in Table 9 in the columns headed "calc. (ii)." The r.m.s. difference between

Table 12.
Values of $\sigma\left(T_{i j}\right)$ (in $10^{-2} \AA^{2}$) and $\sigma\left(\omega_{i j}\right)$ (in deg. ${ }^{2}$).

$$
\sigma(T)=\left[\begin{array}{lll}
0.29 & 0.22 & 0.29 \\
& 0.23 & 0.25 \\
& 0.44
\end{array}\right] \quad \sigma(\omega)=\left[\begin{array}{lll}
1.08 & 1.49 & 0.97 \\
& 6.03 & 2.62 \\
& 0.95
\end{array}\right]
$$

the $U_{i j}^{\text {obs. }}$ and $U_{i j}^{\text {calc. (ii) }}$ values is $0.0066 \AA^{2}$, corresponding to an estimated standard deviation for the $U_{i j}^{\text {obs. }}$ of $0.0073 \AA^{2}$. The estimated standard deviations of the $T_{i j}$ and $\omega_{i j}$ values are shown in Table 12.

Corrections ${ }^{21}$ for the errors introduced into the atomic co-ordinates, and hence the bondlengths, by the angular oscillations of the molecule were calculated from the $\omega_{i j}$ values shown in Table 11. The corrected bond-lengths are listed in Table 5.

The calculations were carried out on the Glasgow University DEUCE computer with programmes devised by Dr. J. S. Rollett and Dr. J. G. Sime.

Chemistry Department, The University, Glasgow W.2.
[Present address: (G. A. S.) Department of Chemistry,
University of Illinois, Urbana, Illinois, U.S.A.] [Received, March 5th, 1964.]

[^0]: ${ }^{1}$ Part IV, Ferguson and Sim, $J ., 1962,1767$.
 ${ }^{2}$ Trotter, Acta Cryst., 1961, 14, 244.
 3 Watson, Nature, 1960, 188, 1102.

[^1]: ${ }^{4}$ Schomaker, Waser, Marsh, and Bergman, Acta Cryst., 1959, $12,600$.
 ${ }^{5}$ Fisher and Yates, " Statistical Tables," Oliver and Boyd, Edinburgh, 1957.

[^2]: ${ }^{6}$ Trueblood, Goldish, and Donohue, Acta Cryst., 1961, 14, 1009.

[^3]: 7 Cruickshank, Acta Cryst., 1957, 10, 504.
 ${ }^{8}$ Brown and Marsh, Acta Cryst., 1960, 13, 1037.
 ${ }^{9}$ Paul, Sim, Hamor, and Robertson, J., 1963, 5502.
 ${ }_{10}$ Hamilton, Hamor, Robertson, and Sim, J., 1962, 5061.
 11 Trotter, Acta Cryst., 1959, 12, 884.
 12 Ferguson and Sim, Acta Cryst., 1961, 14, 1262.
 ${ }^{13}$ Sime and Abrahams, Acta Cryst., 1960, $13,1$.
 ${ }^{14}$ Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.

[^4]: ${ }_{15}$ Tunell, Amer. Min., 1939, 24, 448.
 ${ }^{16} \mathrm{McPhail}, \mathrm{Ph} . \mathrm{D}$. Thesis, 1963, University of Glasgow.

[^5]: ${ }^{18}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{18}$ McWeeny, Acta Cryst., 1951, 4, 513.
 ${ }^{20}$ Tomiie and Stam, Acta Cryst., 1958, 11, 126.
 ${ }^{21}$ Cruickshank, Acta Cryst., 1956, 9, 757.
 ${ }^{22}$ Hughes and Small, Acta Cryst., 1962, 15, 933.
 ${ }^{23}$ Hirshfeld, Sandler, and Schmidt, J., 1963, 2108.

